Graph homology and graph configuration spaces
نویسندگان
چکیده
If R is a commutative ring, M a compact R-oriented manifold and G a finite graph without loops or multiple edges, we consider the graph configuration space MG and a Bendersky–Gitler type spectral sequence converging to the homology H∗(M, R). We show that its E1 term is given by the graph cohomology complex CA(G) of the graded commutative algebra A = H∗(M, R) and its higher differentials are obtained from the Massey products of A, as conjectured by Bendersky and Gitler for the case of a complete graph G. Similar results apply to the spectral sequence constructed from an arbitrary finite graph G and a graded commutative DG algebra A.
منابع مشابه
Homotopy Graph-complex for Configuration and Knot Spaces Pascal Lambrechts and Victor Turchin
We prove that the primitive part of the Sinha homology spectral sequence E2-term for the space of long knots is rationally isomorphic to the homotopy E2-term. We also define natural graph-complexes computing the rational homotopy of configuration and of knot spaces.
متن کاملdominating subset and representation graph on topological spaces
Let a topological space. An intersection graph on a topological space , which denoted by , is an undirected graph which whose vertices are open subsets of and two vertices are adjacent if the intersection of them are nonempty. In this paper, the relation between topological properties of and graph properties of are investigated. Also some classifications and representations for the graph ...
متن کامل$G$-asymptotic contractions in metric spaces with a graph and fixed point results
In this paper, we discuss the existence and uniqueness of fixed points for $G$-asymptotic contractions in metric spaces endowed with a graph. The result given here is a new version of Kirk's fixed point theorem for asymptotic contractions in metric spaces endowed with a graph. The given result here is a generalization of fixed point theorem for asymptotic contraction from metric s paces to metr...
متن کاملSome Fixed Point Results on Intuitionistic Fuzzy Metric Spaces with a Graph
In 2006, Espinola and Kirk made a useful contribution on combining fixed point theoryand graph theory. Recently, Reich and Zaslavski studied a new inexact iterative scheme for fixed points of contractive and nonexpansive multifunctions. In this paper, by using the main idea of their work and the idea of combining fixed point theory on intuitionistic fuzzy metric spaces and graph theory, ...
متن کاملFixed point results in cone metric spaces endowed with a graph
In this paper, we prove the existence of fixed point for Chatterjea type mappings under $c$-distance in cone metric spaces endowed with a graph. The main results extend, generalized and unified some fixed point theorems on $c$-distance in metric and cone metric spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012